K. LEE and V.ESTIVLL-CASTRO: CLASSIFICATION ENSEMBLES FOR SHAFT TEST DATA

نویسندگان

  • KYUNGMI LEE
  • VLADIMIR ESTIVILL-CASTRO
چکیده

A-scans from ultrasonic testing of long shafts are complex signals. The discrimination of different types of echoes is of importance for non-destructive testing and equipment maintenance. Research has focused on selecting features of physical significance or exploring classifier like Artificial Neural Networks and Support Vector Machines. This paper confirms the observation that there seems to be uncorrelated errors among the variants explored in the past, and therefore an ensemble of classifiers is to achieve better discrimination accuracy. We explore the diverse possibilities of heterogeneous and homogeneous ensembles, combination techniques, feature extraction methods and classifiers types and determine guidelines for heterogeneous combinations that result in superior performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A High-Performance Model based on Ensembles for Twitter Sentiment Classification

Background and Objectives: Twitter Sentiment Classification is one of the most popular fields in information retrieval and text mining. Millions of people of the world intensity use social networks like Twitter. It supports users to publish tweets to tell what they are thinking about topics. There are numerous web sites built on the Internet presenting Twitter. The user can enter a sentiment ta...

متن کامل

Support Vector Machine Classification of Ultrasonic Shaft Inspection Data Using Discrete Wavelet Transform

While many non-destructive ultrasonic signal test scenarios involve very shallow surfaces, signals for testing shafts are long and the new problem of mode-converted reflection emerges. They are echoes that do not correspond to cracks in the material, neither to characteristics of the shaft. Also, the length of the signals demands the application of efficient feature extraction mechanism to redu...

متن کامل

Feature Extraction Techniques for Ultrasonic Shaft Signal Classification

Discrete Wavelet Transform (DWT) coefficients of ultrasonic test signals are considered useful features for input into classifiers due to their effective timefrequency representation of non-stationary signals. However, DWT exhibits a timevariance problem that has resulted in reservations for its wide acceptance. In this paper, a new technique to derive a preprocessing method for time-domain A-s...

متن کامل

Credit scoring in banks and financial institutions via data mining techniques: A literature review

This paper presents a comprehensive review of the works done, during the 2000–2012, in the application of data mining techniques in Credit scoring. Yet there isn’t any literature in the field of data mining applications in credit scoring. Using a novel research approach, this paper investigates academic and systematic literature review and includes all of the journals in the Science direct onli...

متن کامل

An Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification

The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005